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Increasing evidence indicates that inhalational anesthetics may cause or increase the risk of developing
postoperative cognitive dysfunction (POCD), especially in the elderly population. POCD may exist as
a transient or long-term complication of surgery and anesthesia and is associated with reduced quality of
life. There remains great discrepancy between clinical studies investigating the prevalence of POCD and
inhalational anesthetics as many fail to show an association. However, numerous animal studies have
suggested that inhalational anesthetics may alter cognitive function via amyloid b accumulation,
modified neurotransmission, synaptic changes and dysregulated calcium homeostasis. Other factors such
as neuroinflammation and pro-inflammatory cytokines may also play a role. This paper reviews the role
of inhalational anesthetics in the etiology and underlying mechanisms that result in POCD.

Copyright � 2011, Taiwan Society of Anesthesiologists. Published by Elsevier Taiwan LLC. All rights
reserved.
1. Introduction

Surgical procedures and administration of anesthesia are asso-
ciated with a transient or permanent state of cognitive decline.
Many studies have documented the onset of postoperative cogni-
tive dysfunction (POCD), which manifests subsequent to surgical
procedures as a decline in brain function, typically resolving within
12 months. Extensive research has been conducted evaluating the
effect of cardiopulmonary bypass during coronary artery bypass
surgery (CABG), which is deemed to be the leading cause of POCD.
The causal association between major surgical procedures, such as
CABG, and cognitive decline has been well documented but it can
also arise with minor surgery.1 In examining the role of anesthesia
and surgery on POCD it is extremely difficult to discriminate
between the effects of the anesthetic agent and the effects of
surgery and associated inflammation. However, animal models
have suggested that inhalational anesthetic agents may precipitate
a decline in cognitive function.2,3 Some animal studies have sug-
gested that surgery or anesthesia can increase amyloid b formation
in the brain and impair memory.4,5 Extensive deposition of amyloid
b may result in synaptic loss and neuronal dysfunction, a central
feature in the pathogenesis of Alzheimer’s disease. It has been
hypothesized that, perhaps through a build-up of amyloid b,
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inhalational anesthetics exert a neurotoxic effect on brain function.
This review focuses on inhalational anesthesia and its role in the
development of cognitive dysfunction. Determining the association
between inhalational anesthesia and cognitive decline is essential
in order to optimize postoperative outcomes in surgical patients
and reduce the incidence of POCD.

2. POCD prevalence and incidence

In 1982, Savageau first described an association between
cognitive dysfunction, surgery and anesthesia exposure.6 The
International Study of Postoperative Cognitive Dysfunction
(ISPOCD) evaluating the prevalence and risk factors associated with
POCD in the elderly population (mean age 68 years, range 60e-81
years) found a 26% incidence 1week post-surgerywith 10% of study
participants exhibiting POCD 3 months post-surgery. Persistent
POCD, as defined by 3 months after surgery, was associated with
greater mortality than 1 week post-surgery. The authors concluded
that age alongwith duration of anesthesia and poor educationwere
significant risk factors in the development of POCD.7 In a study
comparing the effects of xenon, an inhalational anesthetic, to pro-
pofol, an intravenous anaesthetic, on development of POCD in
elderly patients no significant difference in long-term cognitive
function was observed.8 Another study comparing these two types
of anesthesia for supplementary general anesthesia for 35 patients
undergoing knee surgery also found no difference in long-term
cognitive function.9 However, the authors acknowledged that
a failure to find a significant difference might have been because of
the small sample size as opposed to the absence of a true difference.
Published by Elsevier Taiwan LLC. All rights reserved.

mailto:d.ma@imperial.ac.uk
www.sciencedirect.com/science/journal/18754597
http://www.e-aat.com
http://dx.doi.org/10.1016/j.aat.2011.11.001
http://dx.doi.org/10.1016/j.aat.2011.11.001
http://dx.doi.org/10.1016/j.aat.2011.11.001
Shula
Highlight

Shula
Highlight

Shula
Highlight



R. Ologunde, D. Ma150
The highest incidence of POCD occurs in elderly patients,7 but it
can develop in all age groups. The actual incidence of POCD varies
greatly depending on how the condition is defined and the neu-
ropsychological tests used in assessing cognitive function. As such
the average incidence rates have been reported to be 53% at
discharge, 30e80% a few weeks after surgery, 10e60% 3e6 months
post-surgery and 30% at 1e2 years following surgery.6,10e16

However, the mechanisms of POCD development remain largely
unknown although the risk factors including old age, pre-operative
medication, diabetes, type of surgery and atherosclerotic disease
have been identified.7,17e19 In this review, we will focus on the
possible mechanisms of anesthesia-induced POCD development.

3. Anesthesia and cognitive decline

Several studies have been conducted with the aim of elucidating
the mechanism underlying the cognitive dysfunction that follows
anesthesia exposure; yet a clear mechanism remains to be defined.
There is substantial evidence suggesting anesthesia has a role in
cognitive decline, nevertheless a consensus remains to be reached
between general opinion and accepted knowledge.

3.1. Neurocognitive dysfunction

Anesthetics exert their effect on consciousness at various levels
in the central nervous system (CNS) and as such the phenomena
witnessed subsequent to anesthetic administration prior to
surgery is not the result of a single drugetarget interaction. Anes-
thesia, even in low concentrations, can cause short-term amnesia,
which is likely to be mediated through impairment of hippocampal
function as the hippocampus is involved in short-term memory.
Anesthetic agents also moderate function at various excitatory
neurotransmitter-gated ion channels such as the ionotropic
N-methyl-D-aspartic acid (NMDA) channel and inhibitory channels
such as the g-aminobutyric acid (GABA) channel. Actions at these
sites may cause a modification in brain activity and can impair
cognitive function.20 In addition, a role for nicotinic acetylcholine
receptors (nAChRs) in cognitive processes such as memory has
been elucidated with dysfunction of the receptor linked to various
CNS disorders such as Alzheimer’s and Parkinson’s diseases.21 Thus
it would appear, as has been suggested, that inhalational anes-
thetics modulate central nicotinic transmission despite nAChRs not
directly influencing anesthesia-induced hypnosis.19

Long-term memory formation requires activation of NMDA
receptors22 with GABA receptors providing the major inhibitory
stimulus on memory consolidation.23 Both NMDA and GABA
neurotransmitters are present within the hippocampus and thus
subject to dysregulation by anesthetic agents. In 2004 Culley et al
reported that in a rat model isoflurane-nitrous oxide general
anesthesia produced impairment in the ability to acquire and
perform a spatial memory task.3 The authors inferred that the
impairment in performance was caused by an anesthesia-induced
alteration of structural and functional changes within the CNS.
Importantly this deficit in performance occurred in both young and
old mice, suggesting that it is not age dependent. Impaired
hippocampal function and learning subsequent to isoflurane and
nitrous oxide-induced anaesthesia has been well documented.24,25

In a rat model of Pavlovian fear conditioning, isoflurane was found
to cause anterograde amnesia.26 Various volatile anesthetics have
been shown to produce persistent detrimental effects on memory,
learning and functional changes within the CNS.19 From the body of
evidence available it is clear that anesthesia-receptor interaction
contributes to the clinical picture of neurocognitive dysfunction,
yet the mechanisms underlying the resultant pathophysiology
remains unclear.
3.2. Beta amyloid accumulation and deposition

The exact pathogenesis of POCD is complex and multifacto-
rial; however it appears to share certain pathological markers
with Alzheimer’s disease including amyloid b deposition, astro-
cytic gliosis and tau phosphorylation.4 Animal models have
shown that anesthetics, particularly inhalational anesthetics, can
increase the development of these pathological markers in the
brain.4,27,28

The evidence implicating inhalational anesthesia exposure with
increased amyloid b accumulation is considerable.3,5,27 Isoflurane,
in particular, has been shown to enhance amyloid b oligomerization
and cytotoxicity.29 In vitro studies have identified the inhalational
anesthetic isoflurane as a neurotoxic agent promoting b-site
amyloid precursor protein-cleaving enzyme (BACE) activity and
amyloid b deposition,30 and this has been replicated in vivo at
clinical concentrations.5 Given that isoflurane is known to be
a significant cerebralmetabolic depressant,31 Xie et al hypothesized
that isoflurane may alter amyloid precursor protein (APP) function
and promote amyloid b production via energy inhibition.5 Dong
et al found that in wild-type mice sevoflurane elevated levels of
BACE and amyloid b.27 Bianchi et al showed that in the Tg2576
mouse model of APP overexpression amyloid b plaque formation
increased, 1 week after anesthetic exposure.32 Eckenhoff et al
established that halothane produced a concentration-dependent
enhancement of amyloid b oligomerization with anesthetic
concentrations analogous to those used in the clinical setting.29

These findings suggest a link between inhaled anesthetics and
neurocognitive disease pathogenesis.

3.3. Neuroinflammation and anesthesia

Neuroinflammation has been shown to play a role in the path-
ogenesis of neurodegenerative disorders33e35 and cause cognitive
impairment in humans and in animals.36,37 Various pro-
inflammatory cytokines such as tumor necrosis factor-a (TNF-a)
and interleukin-b (IL-b) are released into the bloodstream following
surgery.18 These cytokines can then go on to potentiate the
inflammatory response by promoting the release of other cytokines
from glial cells in the brain. Inflammation plays a pivotal role in the
development of POCD.38e40 Wu et al found that clinically relevant
isoflurane anesthesia increased the production of TNF-a and IL-b
and also IL-6 in the neurons of mice.41 These findings support
the current literature implicating a role for neurons in the
production of pro-inflammatory cytokines which can lead to neu-
roinflammation.35 Wu et al also showed that isoflurane elevated
TNF-a levels to a greater degree in Alzheimer’s disease transgenic
mice, suggesting increased susceptibility to neuroinflammation in
this study group;41 this finding could have interesting correlates for
the representative human demographic.

However, Schilling et al demonstrated that volatile anesthetics,
in particular sevoflurane and desflurane, reduced pro-inflammatory
cytokine release suggesting an alleviating effect on alveolar cyto-
kine production in the ventilated lung after one-lung ventilation.42

The findings from Schilling et al are based on cytokine release in the
ventilated lung and therefore may not directly inform the debate on
neuroinflammation, but do suggest that inhalational anesthetics
may mediate an organ-dependent alteration of cytokine induction
and release.

The exact mechanism by which inhalational anesthetic agents
mediate an increase in TNF-a and other pro-inflammatory cyto-
kines has yet to be elucidated. However, it has been shown that
nuclear factor kappa B-dependent (NF-kB-dependent) pathways
and the receptor for advanced glycation end products (RAGE) play
a role in transcription and cytokine production.43,44
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3.4. Neuroinflammation and surgery

In the operating room, anesthesia and surgery affect the patient
concomitantly. Surgical trauma and its consequences most likely
play a greater role than anesthesia on the development of POCD.
For example, surgery has been shown to cause a transient neuro-
cognitive decline associated with a hippocampal inflammatory
response and activation of glial cells.2,4,45 Pro-inflammatory cyto-
kines released in the periphery exert their effect on the central
nervous system either directly, by traversing the somewhat
permeable bloodebrain barrier, or indirectly by altering vagal
afferent nerve function. The glial cells can be activated within the
CNS by either means and once activated go on to release a variety of
inflammatory mediators such as TNF-a and IL-1b46,47 and neuro-
toxins such as amyloid b.48 These cytokines released within the
hippocampus interferewith cognition and cause a resultant decline
in cognitive function. A 2010 study by Wan et al found that the
microgliosis induced by surgery was prevented by the prior
administration of celastrol, a potent anti-oxidant and anti-
inflammatory compound.2 Similarly Cibelli et al also demon-
strated in 2010 that attenuation of the pro-inflammatory cytokine
response to surgery is possible by the administration of an anti-
inflammatory agent.45 In addition to this, fluctuations in hormone
levels following surgical trauma may affect neurotransmitter
synthesis thereby disturbing cognitive function.49 The neuro-
inflammatory response to surgery appears to be a significant
contributor to the pathogenesis of POCD.

3.5. Synaptic changes following anesthesia

The consequences of amyloid b accumulation in neuro-
inflammation and Alzheimer’s disease pathogenesis has been
implicated with many deleterious effects; one of these is the ability
of aggregates of amyloid b to initiate a cascade of events resulting in
synaptic dysfunction and thus neuronal impairment.18 Abnormal-
ities in hippocampal synaptic neurotransmission following anes-
thesia have also been reported.25

Several studies have shown inhalational anesthetics to decrease
synaptic transmission.50e52 A possible method by which this
happenswas explored in a study by Fütterer et al inwhich rats were
anesthetized with 5.7% desflurane and brains removed and exam-
ined at 0, 24 and 72 hours; cytosolic proteins were examined and
a proteome-wide study conducted.53 Dynamin-1 was found to be
decreased directly and 72 hours after anesthesia. Dynamin-1
mediates the clathrin-dependent endocytosis of membrane
proteins by which synaptic function is regulated,54 and therefore
the authors suggested that through a reduction in this rate-limiting
protein various ion channels and receptors could be moved from
the neuronal cell membrane thus altering synaptic neurotrans-
mission. The authors of this study also showed that the protein
expression induced by inhalational anesthetics persists for much
longer than has previously been reported. Evidence from Fütterer
et al and other studies provides yet another paradigm from which
to evaluate the molecular mechanisms and resultant pathophysi-
ological changes that have been so heavily studied and examined in
the discourse on POCD.

3.6. Neurotransmission affected by inhalational anesthetics

It has been suggested that exposure to inhalational anaesthetics
can cause neurotoxicity via activation of GABA receptors resulting
in neuronal apoptosis.25,55,56 Various studies have shown that
enhancement of GABAergic activity in the neonatal brain can
indeed result in excitotoxicity and neurodegenration in immature
neurons.56,57 Another key site of action of anesthetics is the NMDA
receptor; antagonism of this receptor by inhalational anesthetics
such as isoflurane may result in neuronal degeneration and
apoptosis thus suppressing the neurotrophic support glutamate
affords the brain.25,56 Anesthetics exert their therapeutic effect at
various sites with which they have affinity. Receptor site interac-
tions via agonistic or antagonistic actions, as apparent by the
ability of inhalational anesthetics to increase activity at the GABA
receptor site58 and some NMDA antagonizing inhalational anes-
thetics such as isoflurane and nitrous oxide to cause neurotox-
icity,3,59 suggest that anestheticereceptor interplay modulates
neurotransmission which preludes neurocognitive decline as wit-
nessed postoperatively.

3.7. Neuronal calcium homeostasis affected by anesthetics

Another sitewhere anesthetics maymodulate function is within
the neuronal cytoplasm and organelles; mounting evidence
suggests that inhalational anesthetics may alter intracellular
calcium homeostasis which may contribute to the molecular
mechanisms behind the pathogenesis of neurodegenerative disor-
ders such as POCD and Alzheimer’s disease.20,60,61 It has been
hypothesized that anesthesia-mediated activation of inositol
triphospate (IP3) or ryanodine receptors on the endoplasmic retic-
ulum (ER) membrane causes the alteration in calcium concentra-
tions.62,63 Recent investigations have proved this hypothesis by
showing that, in both tissue culture and animal studies, inhalational
anesthetics induce neurodegeneration and apoptosis via a disrup-
tion of intracellular calcium homeostasis, specifically by causing
excessive activation of IP3 receptors, resulting in increased calcium
release from the ER.60,64,65 However this phenomenom was found
to occur inconsistently between different inhalational anesthetics;
isoflurane being the most potent inducer of calcium dysregulation
and subsequent neurodegenration.60 In addition, another study
found that rat pheochromocytoma neurosecretory cells (PC12),
a cell type with elevated IP3 receptor activity, transfected with
an Alzheimer’s presenilin-1 mutation rendered neurons more
vulnerable to isoflurane toxicity.66 Considerable evidence here
points to a role for calcium homeostasis as a major regulator in the
neurodegeneration pathway. Calcium also plays a role in the release
of neurotransmitters and thus its dysregulation may also exert
a passive effect on neurotransmission via this indirect route.

3.8. Nitric oxide changes following anesthesia

Inhalational anesthetics have also been shown to increase
synthesis of nitric oxide (NO)67 and decrease activity of nitric oxide
synthase (NOS).68 In a study by Tobin et al NOS inhibitors were
shown to block the increase in NO synthesis suggesting that
inhalational anesthetics increase NO by enhancing NOS activity.68

Nitric oxide has been indentified as having a role in learning and
memory processes.69 Since NO is known to relax blood vessels and
thus facilitate blood flow to the brain,70 it had been suggested that
it may augment neuronal activity in this context. However, several
studies have shown that the NOS inhibitor 7-nitroindazole (7-NI)
results in impaired memory and learning processes in various
animal studies,71e73 but does not affect cerebral blood flow.74 These
findings suggest that direct impairment of neuronal action as
opposed to alteration of cerebral blood flow is the cause of the
cognitive deficits observed by NOS inhibitors.69

3.9. Physiology and anesthesia

A less well-explored area of research is the physiological
changes that take place with aging and how these may alter the
ability of the body to process anesthetics. POCD is most common in
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the elderly population and normal physiological changes associated
with senescence may explain the apparent greater extent of
cognitive decline in this age group. The changes in pharmacody-
namics and pharmacokinetics that occur with aging, coupled with
the presence of possible co-morbidities, may affect the clinical
picture of cognitive dysfunction in this group of the population
following surgery and exposure to anesthesia. These various factors
may affect the doseeresponse relationship of anesthetics and thus
the incidence of POCD in the elderly.17

4. Clinical implications of POCD

Currently there is no treatment for POCD and therefore patients
face a variable clinical outcome that may range from short-term
cognitive decline to long-term dysfunction. POCD is a potentially
traumatizing experience resulting in diminished quality of life,
recurrent hospital admissions and increased hospital costs. The use
of inhalational anesthetics is of considerable importance in patients
who may undergo multiple procedures and thus increase their
exposure to anesthesia. The pathogenesis of POCD is poorly
understand andmuch needs to be done to elucidate themechanism
behind it with a view to developing novel therapeutic interventions
or altering the delivery of currently used regimens to prevent the
devastating consequences, particularly for the elderly population,
that are currently encountered.

5. Future study

Drug interventions that target the body’s molecular mecha-
nisms for processing anesthesia may help to overcome the dele-
terious effects of volatile anesthetics. Future research should be
directed towards exploring inhalational anesthetics with neuro-
protective effects; such as xenonwhich affords neuroprotection via
its antagonism of the NMDA receptor.75 Barbiturates have also been
proposed as neuroprotective agents and may play a role in the
future of POCD prevention andmanagement.76 However the nature
of volatile anesthetics is such that they can affect many physio-
logical systems and antagonism of some central or peripheral
effects may also prove a viable therapeutic pursuit.

6. Conclusion

With life expectancy on the increase, the burden of disease and
illness necessitating surgical intervention in the elderly population
is likely to also increase. It is paramount that a thorough under-
standing of the effects of surgery and anesthesia on cognitive
function is developed, and in particular the role of inhalational
anesthetics on cognitive decline.
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