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Abstract The aim of this research was to investigate
the coexposure of nanoparticles of titanium dioxide
(TiO2) and copper oxide (CuO) on the alterations of
the gill, intestine, kidney, and liver tissues of carps
(Cyprinus carpio). In this study, carps (length
23 ± 1.5 cm; weight 13 ± 1.3 g) were divided into six
groups of 15 each and exposed to 2.5 and 5.0 mg L−1 of
CuO nanoparticles (NPs), 10.0mg L−1 of TiO2 NPs, and
2.5 and 5.0 mg L−1 of CuO NPs + 10.0 mg L−1 of TiO2

NP mixture. Fish were sampled for histopathological
studies after hematoxylin-eosin staining. Results indi-
cated that the more kinds of histopathology anomalies
observed with CuO NP and TiO2 NP mixture were
broadly of the same type as CuO NPs and TiO2 NPs
alone, but the severity or incidence of injuries of gill,
intestine, liver, and kidney of carps in the mixture of

CuO NPs + TiO2 NPs was higher than that of each NP
alone. Moreover, behavioral changes in carps exposed
to CuO NP and TiO2 NP mixture such as hyperactivity,
loss of balance, and convulsions were higher than those
to CuO NPs and TiO2 NPs alone. In conclusion, the
presence of TiO2 NPs enhanced the effects of NPs of
copper oxide in terms of histopathological changes in
carps.
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Introduction

Nanoparticles (NPs) are applied in a variety of consumer
products at large such as fillers, opacifiers, semiconduc-
tors, catalysts, cosmetics, and microelectronics
(Shahmoradi et al. 2011; Maleki and Shahmoradi
2012). Titanium dioxide (TiO2) is the naturally occur-
ring oxide or mixed oxide with other metals and in-
cludes three crystalline forms: anatase, brookite, and
rutile (Clemente et al. 2012). TiO2 NPs have been used
in various sectors such as degrading organic contami-
nants and germs, UV-resistant material, cosmetic prod-
ucts, antiseptic and antibacterial compositions, and pa-
per industry. Moreover, copper oxide nanoparticles
(CuO NPs) are widely applied in numerous fields such
as antifouling paints, bactericides, batteries, electronics,
gas sensors, and textiles (Chowdhuri et al. 2004; Zhang
et al. 2005; Almeida et al. 2007; Buffet et al. 2011; Song
et al. 2015). Thus, large quantities of these NPs may be
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released into the aquatic environment and may cause
adverse effects on aquatic organisms.

The release of metal oxide NPs in environment is a
worldwide concern due to their bioaccumulation, toxic-
ity, and presence in consumer products and industrial
pollutants (Melegaria et al. 2013). The acute and chronic
toxicity effects of NPs of TiO2 and CuO on the organs of
aquatic organisms such as fish have been illustrated by
many researchers (Federici et al. 2007; Speisky et al.
2009; Khabbazi et al. 2015). According to previous
articles by different scholars, a series of injuries such
as reactive oxygen species-derived oxidative stress
(Gomes et al. 2011; Buffet et al. 2011), DNA damage,
and biochemical lesions (Karlsson et al. 2008; Abdel-
Khalek et al. 2015) were reported in the exposure to the
CuO NPs of human and aquatic organisms, which may
suggest ecological implications of CuO NP toxicity for
human and other organisms. Adama et al. (2015) dem-
onstrated that the increasing exposure to CuO NPs
causes reduction in the reproduction and length and
enhances copper uptake in Daphnia magna. However,
the information about ecotoxicological risk of
coexisting NPs and other pollutants in the organism’s
organs such as fish is limited and, in some cases, even
nonexistent.

Nanomaterial behavior and toxicity in the pres-
ence of other nanomaterials and environmental con-
taminants could be changed. Several parameters af-
fect the toxicity of nanomaterials, including
nanomaterial type, size, and concentration, as well
as exposure time, species, and environmental condi-
tions. In recent years, several investigations have
revealed the coexposure of NPs with other environ-
mental contaminants such as TiO2 NPs and Cd on
carps (Zhang et al. 2007), TiO2 NPs on toxicity of Ag
NPs (Zou et al. 2014), and cadmium telluride quan-
tum dots (CdTe QDs) on toxicity of Cu on zebrafish
(Zhang et al. 2013). These findings reveal that
manufactured NPs may have important direct effects
and indirect impacts on aquatic species such as fish
by interactions with other environmental contami-
nants. However, to assess the toxicity of coexistence
of NPs with other environmental pollutants, further
comprehensive studies are needed for a proper un-
derstanding of the potential risks of NPs. Therefore,
the aim of the present research was to investigate the
coexistence effects of NPs of TiO2 and CuO on the
gill, intestine, kidney, and liver alterations of com-
mon carps, Cyprinus carpio.

Materials and methods

NPs and characterizations

TiO2 NPs (anatase/rutile, 99+ (% and CuONPs (99+%)
used in this study were produced by US Research
Nanomaterials Inc. (3302 Twig Leaf lane, Houston,
TX77084) and purchased from Nanosany Co. (Mash-
had, Iran). Complete characterization of both
nanomaterials was provided by Nanosany Co. Briefly,
morphology and mean unaggregated particle diameters
of NPs of TiO2 and CuO were determined by scanning
electron micrographs (SEM) and transmission electron
microscopy (TEM), and for the analysis of phase struc-
ture of both NPs, X-ray diffraction (XRD) was used
(Fig. 1). Dynamic light scattering (DLS; Zetasizer Nano
(ZS) model ZEN3600, Malvern Instruments Ltd.,
Worcestershire, UK) was applied to determine the zeta
potential and hydrodynamic diameter of NPs of CuO
and TiO2 in deionized water.

Test organism and experimental condition

Common carps (C. carpio; length 23 ± 1.5 cm; weight
13 ± 1.3 g) were bought from a local aquaculture farm in
Gilan province, Iran, and were acclimated in 1000-L
tanks for 1 month and maintained in aquariums under
a 12-h light/dark. During the acclimatization period, the
carps were fed fish food every day and were deprived of
food 1 day prior to starting the experiments. Water used
to study toxicity in this research has the characteristics
of 5° dGH for hardness, 600 ± 10 μS cm−1 for conduc-
tivity, 7.5 ± 0.5 for pH, 6.0 ± 0.6 mg L−1 for dissolved
oxygen (DO) content, and 26.0 ± 1 °C for temperature.

Acute toxicity

According to results of Linhua et al. (2009) and Lee et al.
(2012), one sublethal concentration of NPs of TiO2

(10 mg L−1) was selected. Moreover, to determine the
appreciated concentrations of CuO NPs for acute experi-
ments, a series of toxicity experiments were carried out
based on OECD 203 (OECD 1992). Thereafter, for certain
tests, fish were treated with 15, 20, 25, 30, 35, 40, 45, 50,
and 55 mg L−1 of NPs for 96 h. During the testing period,
the behavior and mortality of the carps were recorded, and
dead fish, after being recorded, were immediately removed
from the aquariums tested. Lethal concentrations at 50 %
(LC50) and confidence interval values were calculated by
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means of the Probit Analysis Program, version 1.5 (US
Environmental Protection Agency). Moreover, if the cal-
culated chi-square test statistic for heterogeneity (2.49) was
lower than the tabular value (16.91), all results were ac-
cepted. As described by Kumar et al. (2007), the behavior
pattern of carps was recorded.

After determining the 96-h LC50 for CuO NPs, two
sublethal concentrations of CuO NPs (including 2.5 and
5.0 mg L−1), which were approximately equal to 1/20th
and 1/10th of LC50 concentrations, were selected to study
their toxicity alone or in combination with 10mg L−1 TiO2

NPs. Briefly, the fish were divided into six groups of 15
each in 55-L glass aquariums, exposed to different treat-
ments in triplicate and for 4 days: the first group was the
control (without adding any chemicals), while the second
groupwas those that are exposed to TiO2NPs (10mgL

−1),
the third and fourth groups to CuO NPs (2.5 and
5.0 mg L−1), and the fifth and sixth groups to mixtures of
TiO2 NPs (10 mg L−1) and CuO NPs (2.5 mg L−1), and
TiO2 NPs (10 mg L−1) and CuO NPs (5.0 mg L−1), re-
spectively. In order to minimize decreases in the CuO and

TiO2 concentrations during the experiments, 50 % of the
water of each aquarium was renewed every day.

Histological examinations

Histological observations were performed by
hematoxylin-eosin staining. Following 4-day exposure
to different groups of NPs, the carps were carefully
anesthetized. Tissues of gill, intestine, kidney, and liver
of carps were dehydrated in graded ethanol series and
embedded in paraffin. After that, sections with a thick-
ness of 5 μm were prepared by a microtome (MicroTec,
Rotary microtome, CUT 4050). These slides were ob-
served microscopically (Nikon Eclipse- E200;
Mansouri et al. 2015). Histopathological anomalies in
the carp tissues were categorized as none (−), mild (+),
moderate (++), and severe (+++) effects. In this study,
experimental procedures conformed to the Ethics Com-
mittee of the Kurdistan University of Medical Sciences
(MUK.REC.1393.198). Compliance with ethical stan-
dards. In this study, experimental procedures conformed

Fig. 1 TEM (a), SEM (b), and X-ray (c) images of tested TiO2 NPs and CuO NPs

Environ Monit Assess  (2016) 188:575 Page 3 of 12  575 



to the Ethics Committee of the Kurdistan University of
Medical Sciences (MUK.REC.1393.198).

Results

NPs and characterizations

The main characteristics of TiO2 NPs in this research
were assessed including bulk density (0.46 g cm−3), loss
of weight on ignition (0.99 %), loss of weight in drying
(0.48 %), pH (5.5–6.0), and specific surface area
(20 m2 g−1). Also, other characteristics of CuO NPs
were 20 m2 g−1 for specific surface area (SSA),
6.4 g cm−3 for true density, and 0.79 g cm−3 for bulk
density. According to the results of the dynamic light
scattering (DLS) method in Table 1, the hydrodynamic
diameters of the TiO2 NPs, CuONPs (2.5 mg L−1), CuO
NPs (5.0 mg L−1), and mixtures of TiO2 NPs and CuO
NPs (2.5 mg L−1) and TiO2 NPs and CuO NPs
(5.0 mg L−1) were 26.9, 26.68, 35.07, 55.17, and
42.7 nm, respectively. Results illustrated that the

presence of TiO2 NPs enhanced the zeta potential, poly-
dispersity index, and hydrodynamic diameter of CuO
NPs in comparison with the CuO NPs alone.

Acute toxicity test

The results of the acute toxicity of CuONPs in common
carps are shown in Table 2. Accordingly, the 96-h
median lethal concentration of CuO NPs was
49.6 mg L−1. No mortality was observed during the
experimental period in controls. Moreover, the intercept
and slope of acute toxicity of CuO NPs were −0.7687
and 3.4017, respectively (Table 3). Hence, the further
studies such as histopathological studies were analyzed
below the concentration of LC50 value. Common carps
exposed to CuO NPs and TiO2 NPs exhibited abnormal
behaviors such as enhanced rate of opercular activity,
rapid swimming, convulsions, hyperactivity, loss of bal-
ance, and increased surfacing activity with the changing
groups of TiO2 NPs and CuO NPs in comparison with
the control group (Table 4). Exposure to NPs led to
lethargy and mucus secretion from the body. Moreover,
fish that swam to the surface in the different experimen-
tal groups were higher than those in the control group,
while behavioral changes and mortality were not ob-
served in the control group. In addition, abnormal be-
havior of common carps exposed to CuO NP and TiO2

NP mixture was higher than that exposed to CuO NPs
and TiO2 NPs alone.

Table 2 Results of acute toxicity (LC50) of nanoparticles of CuO
(mg L−1) calculated by EPA method

Exposure point Concentration Lower Upper

LC1.0 10.2 6.1 14.1

LC5.0 16.3 11.1 20.5

LC10.0 20.8 15.5 25.1

LC15.0 24.6 19.2 28.9

LC50.0 49.6 43.8 57.5

LC85.0 100.11 81.1 140.9

LC90.0 118.1 92.8 175.9

LC95.0 151.1 113.2 244.7

LC99.0 239.7 163.9 456.3

Table 3 Characteristics of acute toxicity of CuO NPs estimated
by EPA method

Parameters Estimate Std. err. 95 % Confidence limit

Intercept −0.768763 0.758475 (−2.255375, 0.717849)
Slope 3.401746 0.462183 (2.495867, 4.307625)

Table 1 Characteristics of nanoparticles of TiO2 and CuO and their mixture determined by DLS

Groups Zeta potential (mV) Polydispersity index (PDI) Hydrodynamic diameter (nm)

TiO2 NPs (10 mg L−1) −14.18 0.5 22.2

CuO NPs (2.5 mg L−1) −5.07 0.2 26.6

CuO NPs (5.0 mg L−1) −1.46 0.08 35.0

CuO NPs (2.5 mg L−1) and TiO2 NPs −21.5 0.4 42.7

CuO NPs (5.0 mg L−1) and TiO2 NPs −4.66 0.4 61.5
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Gill and intestine histopathology

The gill and intestine histopathology anomalies of
common carps in acute toxicity period are shown
in Fig. 2. According to results, the gills and intes-
tine of control fish indicated only some small
histopathological anomalies, while exposure to dif-
ferent groups of NPs has made greater intensity of
tissue damages of dilated and clubbed tips, mucus
secretion, edema (Oe), hyperplasia (Hp), lamellar
fusion (F), synechiae of lamellae, epithelium short-
ening (ES), aneurism (An), and necrosis. Lamellar
fusion and hyperplasia anomalies in secondary la-
mellae were recognized on filaments of the gill in
half of carps from mixture of CuO and TiO2 NP
treatment. Moreover, fusion and hyperplasia are
the highest and severe damages found in the gill
of the carps.

According to our results, the most important alter-
ations in intestine tissues observed include degenera-
tion, integration of villi, expansion at villi structure,
increase in the number of blood cells, and necrosis and
erosion. The intestine and gill tissues of carps indicated
different histological anomalies depending on the
groups. The histopathological results in Table 5 indicat-
ed that the intensity of anomalies of gill tissue, such as
lamellar fusion, edema, hyperplasia, epithelium short-
ening, and aneurism, in the mixture of CuO NPs and
TiO2 NPs was higher than that in NPs alone. Moreover,
the intensity of intestine anomalies such as degeneration
(D) and the increase in the number of blood cells
(INBC) in the mixture of CuO NPs and TiO2 NPs were
higher than those in NPs alone. In addition, the gill and
intestine histopathology anomalies of common carps
exposed to the CuO NPs in the presence of TiO2 NPs
were increased.

Liver and kidney histopathology

The histological anomalies in the kidney and liver of
carps due to toxicity effects caused by NPs of TiO2 and
CuO are illustrated in Fig. 3. In control, no significant
recognizable changes were observed in kidney and liver
tissues during the experimental period. Unlike the con-
trol group, various histopathological anomalies were
identified in the kidney and livers of carps exposed to
the different groups of NPs. The intensity of some of
histopathological alterations such as hepatocyte necrosis
(HN), hemorrhage (H), dilated sinusoids (DS), blood
sinusoids (BS), and melanomacrophage aggregates
(MA) in the liver of carps exposed to NPs of TiO2 and
CuO mixture was much higher compared to those fish
exposed to TiO2 and CuO NPs alone as well as control
group (Table 6). Moreover, increased Bowman’s space,
renal tubule degeneration, glomerular necrosis, necrosis
of hematopoietic tissue, and congested blood vessels
were the most important alterations in kidney tissues
of common carps. In addition, according to our study,
the effects of NPs of CuO on the histological anomalies
of the kidney and liver of common carps in the joint
presence of TiO2 NPs were increased.

Discussion

Acute toxicity

The present study indicated that the 96-h LC50 of CuO
NPs for common carps (C. carpio) was 49.6 mg L−1,
and according to the toxicity classification of chemical
materials (USEPA 2010), it is suggested that CuO NPs
in freshwater be classified as slightly toxic substances.
Griffitt et al. (2007) reported that the LC50 concentration

Table 4 Impact of CuO NPs and TiO2 NPs on the behavior of common carps for 96 h

Parameters CuO NPsa and TiO2 NPs CuO NPsb and TiO2 NPs CuO NPsa CuO NPsb TiO2 NPs Control

Convulsions +++ +++ + + − −
Loss of balance +++ ++ + + − −

Rate of opercular activity ++ ++ + + + −
Rate of swimming ++ ++ + ++ + +

Hyperactivity +++ ++ ++ + + −

(−) None, (+) mild, (++) moderate, and (+++) strong
aHC high concentration (1/10th; 5.0 mg L−1 )
b LC low concentration (1/20th; 2.5 mg L−1 )
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of Cu NPs was 1.5 mg L−1 during 48 h and the value
obtained is toxic to zebrafish (Danio rerio). Moreover,
Jahanbakhshi et al. (2015) recorded that 96-h LC50 of
nano-CuO was 2.19 mg L−1 in roach (Rutilus rutilus),
explaining that the LC50 values showed that CuO NPs
were moderately toxic to the organisms, while Abdel-
Khalek et al. (2015) illustrated that the 96-h LC50 of
CuO NPs was 150 mg L−1 in Nile tilapia (Oreochromis
niloticus). Acute toxicity of copper forms on fish de-
pends on different parameters, but CuO potential toxic-
ity should not be ignored. According to this research,
some disorders in behavioral patterns of fish such as
mucous secretion and lethargy from the body of com-
mon carps were observed. The behavioral changes ob-
served in this research were consistent with those in the

previous results on other NPs (Perera and Pathiratne
2012) and metals (Begum et al. 2006; Mishra and
Mohanty 2008).

Gill histopathology

The gill tissue as vital organs in the body of fish plays
several critical roles such as osmoregulation, respiratory
gas exchange, and body fluid permeability balance;
moreover, this tissue, which has a large superficial area
of the epithelium and a direct contact between organ and
water, is more susceptible to chemical pollutant effects in
aquatic systems (Baramaki et al. 2012; Nowrouzi et al.
2012; Maleki et al. 2015). According to our observations
in this research, the major gill responses of carps exposed
to CuONPs, TiO2NPs, and CuONP +TiO2NPmixtures
were aneurism, fusion, gill epithelial hyperplasia, and
lamellar synechiae, which might cause respiratory and
osmoregulatory disorders. These tissue damages, more-
over, play a role in defensemechanisms against pollutants
as well as in preventing further damage of toxic sub-
stances. The formation of aneurism was observed in
common carp gills exposed to different groups of NPs,
while the extent and severity of this lesion were higher in
CuO NP + TiO2 NPmixtures than those in CuO NPs and
TiO2 NPs alone. Aneurism is the blood-filled bulge in the

�Fig. 2 Gill and intestine morphology in common carps in acute
period (4 days). The gills and intestines of control fish illustrated
only some small histopathological anomalies, while all treatments
in gill organs (1–3) indicated anomalies such as curvature (Cu),
dilated and clubbed tips (DCt), edema (Oe), hyperplasia (Hp),
mucus secretion (Ms), lamellar fusion (F), aneurism (An),
hypertrophy (Ht), lamellar synechiae (LS), epithelium shortening
(ES), dilated marginal channel (MC), and necrosis (N) and, in
intestine organs (4–6), injuries that include degeneration (D),
integration of villi (IV), increase in the number of blood cells
(INBC), vacuolation (V), expansion at villi structure (EVS),
necrosis, and erosion (NE)

Table 5 Histopathological anomalies on the gill and intestine organs of carps exposed to treatment groups of NPs and the control group

Organs/groups Anomalies

Gill Cu Oe Hp LS F DCt ES An N

CuO NPsa and TiO2 NPs ++ ++ +++ ++ +++ + ++ ++ ++

CuO NPsb and TiO2 NPs + + ++ ++ ++ + + ++ +

CuO NPsa − + ++ + + + − − −
CuO NPsb − + ++ + + + − + −
TiO2 NPs + + + − + + − − −
Control + − − − − − − − −
Intestine D NE INBC IV EVS V

CuO NPsa and TiO2 NPs +++ ++ ++ ++ ++ ++

CuO NPsb and TiO2 NPs ++ ++ + + ++ ++

CuO NPsa ++ + − + + +

CuO NPsb + + − − − +

TiO2 NPs + − − + − +

Control − − − + − +

None (−), mild (+), moderate (++), and severe (+++)
aHC high concentration (1/10th; 5.0 mg L−1 )
b LC low concentration (1/20th; 2.5 mg L−1 )
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wall of a blood vessel, and the breakdown of vascular
integrity may cause some damages in fish such as (1)
disturbances in blood flow in the gills, (2) risk of rupture,
and (3) bleeding or death (Stentiford et al. 2003; Flores-
Lopes and Thomaz 2011). Al-Bairuty et al. (2013), in a
similar research, illustrated that the nano-Cu caused a
high rate of aneurism in the branchial vasculature of
rainbow trout (Oncorhynchus mykiss). In experimental
studies, Rajkumar et al. (2015) andMansouri et al. (2015)
observed lamellar aneurisms in the gills of Labeo rohita

and D. rerio exposed to Ag NPs and Co NPs,
respectively. In another study, Stentiford et al. (2003)
reported severity of this lesion in fish from contaminated
areas and confirmed that it could be related to presence of
pollutants in the water.

Lamellar synechiae was observed as one of alterations
in the gill of common carps exposed to different groups of
NPs, and the results of this study similar to the results of
Nero et al. (2006) illustrated that the chloride cell prolif-
eration and epithelial cell proliferation led to synechiae in

DG
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M

S
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N

HNP

H

CV

BS

MA

DS

NS
ND

V

Control- Liver yendiK-lortnoC

1 2

3 4

Fig. 3 Liver and kidney morphology in common carps in acute
period (4 days). The liver and kidney of control fish indicated only
some small histopathological alterations, while all treatments in-
dicated anomalies such as vacuolization (V), hepatocyte necrosis
(HN), nuclear degeneration (ND), hemorrhage (H), dilated sinu-
soids (DS), narrowing of sinusoids (NS), blood sinusoids (BS),

pigmentation (p), melanomacrophage aggregates (MA) in liver
tissue (1 and 2), glomerular alteration (GA), increased Bowman’s
space (IBS), melanomacrophages (M), renal tubule degeneration
(Dg), enlarged sinusoids (S), glomerular necrosis (GN), necrosis of
hematopoietic tissue (N), and congested blood vessel (CV) in
kidney tissue (3 and 4)
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gill lamellae. Also, gill clubbing is due to excess mucus
production. Exposure to pollutants such as NPs increased
mucus secretion from the epithelium of the secondary
lamellae, and this condition resulted in the fusion of
secondary gill lamellae, resulting in impaired respiration
(Mansouri et al. 2015). Given the results of the present
study, lamellar fusion was one of the most prominent
damages observed microscopically. It often resulted from
epithelial hypertrophy and hyperplasia, and this alteration
may be an indication of their either reaction to toxicant
such as NP intake or adaptation to prevent pollutant entry
through the gill surface (Cerqueira and Fernandes 2002;
Olurin et al. 2006). A similar alteration has been reported
by several authors following acute or chronic intoxication
of fish by various NPs such as TiO2 NPs (Hao et al.
2009), Co NPs (Mansouri et al. 2015), and Ag NPs
(Mansouri et al. 2015).

Intestine histopathology

Intestine is one of the target organs coming into
contact with food-borne aquatic pollutants and is
very much vulnerable to ingested toxic substances.
In this study, most important anomalies in intestine
organs exposed to different groups of NPs included
degeneration, expansion at villi structure, increasing
number of blood cells, and necrosis and erosion.

Although the damages caused by the CuO NPs and
Cu NP + TiO2 NP mixture were somewhat similar,
the severity of damage caused by Cu NP + TiO2 NP
mixture was higher than that by the CuO NPs alone,
and the quantitative analysis confirmed this differ-
ence in severity. Studies have shown that intestinal
microvilli make a large surface area for absorption of
substances and the increase in length or density of
intestinal microvilli can enhance absorptive ability by
intestine (Sang and Fotedar 2010; Daniels et al.
2010). Results indicated that TiO2 NPs + CuO NP
mixture could increase intestinal microvilli length of
carps, which suggested that TiO2 NPs could enhance
the toxicity of CuO NPs on the intestinal microvilli.
Federici et al. (2007) revealed that the nano-TiO2

caused the erosion and fusion in villus and vacuola-
tion of the intestinal epithelial cells in rainbow trout
(O. mykiss). In a similar research using rainbow trout
(O. mykiss), after 21 days of exposure to sublethal
concentrations of Ag NPs, inflammation and necrosis
in the intestinal tissues were reported by Johari et al.
(2015).

Liver histopathology

Histological anomalies in the liver of common carps
include vacuolization, HN, nuclear degeneration, DS,

Table 6 Histopathological anomalies on the tissues of liver and kidney of carps exposed to treatment groups of NPs and the control group

Organs/groups Anomalies

Liver V HN ND H DS BS MA

CuO NPsa and TiO2 NPs ++ ++ ++ ++ ++ +++ +++

CuO NPsb and TiO2 NPs ++ ++ ++ ++ + ++ +++

CuO NPsa + + ++ + + + ++

CuO NPsb + + + + + + +

TiO2 NPs + − + + − + +

Control +a − − − − + −
Kidney GA IBS GN N CV S

CuO NPsa and TiO2 NPs +++ ++ +++ +++ +++ +++

CuO NPsb and TiO2 NPs +++ ++ ++ +++ +++ ++

CuO NPsa ++ + + + + +

CuO NPsb + + + + + +

TiO2 NPs + + − + − +

Control + + − − − −

None (−), mild (+), moderate (++), and severe (+++)
a HC: high concentration (1/10th; 5.0 mg L−1 )
b LC: low concentration (1/20th; 2.5 mg L−1 )
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BS, pigmentation, and MA. Similar changes were ob-
served in the liver of common carps (C. carpio) exposed
to TiO2 NPs (Hao et al. 2009), rainbow trout (O. mykiss)
exposed to Cu NPs (Al-Bairuty et al. 2013), and Sibe-
rian sturgeon (Acipenser baerii) exposed to Cu NPs
(Ostaszewska et al. 2015). In another study by Smith
et al. (2007), it was shown that rainbow trout (O. mykiss)
exposure to single-walled carbon nanotubes (SWCNT)
caused similar types of histopathology alterations in the
liver structure. As liver is one of the most important
tissues of detoxification and active metabolism, histo-
logical anomalies in this tissue have been used as suit-
able biomarkers for assessing the health of fish exposed
to different NPs (Al-Bairuty et al. 2013; Jayaseelan et al.
2014). According our results, HN and nuclear degener-
ation were the most important histopathological effects
observed in the liver tissue samples. Histological anom-
alies such as degeneration and necrosis of hepatocytes in
the liver tissues may be due to the effects of NPs
accumulation and increase in their concentration over
time (Mohamed 2001).

Kidney histopathology

Most lesions of the kidney in this study included
alterations in Bowman’s space, renal tubule degener-
ation, melanomacrophages, glomerular necrosis, and
necrosis of hematopoietic tissue. Kaya et al. (2016),
in a similar research, reported that the ZnO NPs lead
to alterations in Bowman’s space, degeneration of
renal tubule, vacuolation, MA, and necrosis of hema-
topoietic tissue in the kidney of tilapia (Oreochromis
niloticus). Based on the results of this research, CuO
NP and TiO2 NP mixture caused increase in the
intensity of lesions in the kidney and liver compared
to TiO2 NP and CuO NP groups. Overall, the pres-
ence of TiO2 NPs leads to an enhance in the toxicity
of NPs of CuO and the synergistic effect of the
toxicity of these NPs leads to increases in the inten-
sity of severity of common carp organs. Some studies
have illustrated that the coexposure of NPs with other
NPs and environmental pollutants have the ability to
reduce their toxicity effects on the body of aquatic
organisms (Zou et al. 2014; Mansouri et al. 2016),
whereas other investigations have reported that the
presence of NPs increases the toxicity of other NPs
and environmental pollutants (Zhang et al. 2007; Shi
et al. 2015). Rosenfeldt et al. (2015) illustrated that
the presence of TiO2 NPs decreased the toxicity

effects of copper on the benthic amphipod
Gammarus fossarum, while the results of Canesi
et al. (2014) presented that both the synergistic and
antagonistic effects of TiO2 NPs in combination with
TCDD on the marine bivalve depend on several pa-
rameters such as biomarker response and cell and
tissue types. More studies are needed to evaluate
the behavior of NP coexistence with other pollutants
to understand the potential risks of environmental
pollution by NPs.
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