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High amounts of artificial food colorants present in infants' 
diets.

Children behavioral problems related with ACs point to attention 
disorders.

Comparison of HSA binding affinity to ACs and their natural 
industrial equivalents.

H-bonding is stronger for the five ACs studied than their natural 
equivalents.
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Study on the interaction of artificial and natural food
colorants with human serum albumin: a computational

point of view

Diego Masone∗1, Céline Chanforan2

Abstract

Due to the high amount of artificial food colorants present in infants’ diets,

their adverse effects have been of major concern among the literature. Artificial

food colorants have been suggested to affect children’s behavior, being hyper-

activity the most common disorder. In this study we compare binding affinities

of a group of artificial colorants (Sunset yellow, Quinoline yellow, Carmoisine,

Allura red and Tartrazine) and their natural industrial equivalents (Carminic

Acid, Curcumin, Peonidin-3-glucoside, Cyanidin-3-glucoside) to Human Serum

Albumin (HSA) by a docking approach and further refinement through atom-

istic molecular dynamics simulations. Due to the protein-ligand conformational

interface complexity, we used collective variable driven molecular dynamics to

refine docking predictions and to score them according to a hydrogen-bond cri-

terion. With this protocol, we were able to rank ligand affinities to HSA and to

compare between the studied natural and artificial food additives. Our results

show that the five artificial colorants studied bind better to HSA than their

equivalent natural options, in terms of their H-bonding network, supporting the

hypothesis of their potential risk to human health.
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1. Introduction

In food manufacturing the addition of color is almost ubiquitous to improve

consumers’ perception of the processed products. Indeed, the addition of food

colors allows insuring a standardized shade of food products. Today, natural

colors are largely used as food ingredients in Europe and in the US, whereas in

other regions, such as South America, artificial colors (ACs) are still considered

the main solution for food coloring purposes (Hallagan et al., 1995; Wissgott and

Bortlik, 1996), (for more details please see Global New Products Database 2014,

www.gnpd.com). Although processed food might has powered human evolution

(Kim, 2013), current levels of ACs in the acceptable daily intake are of major

concern. Not surprisingly, the amount of ACs certified by the Food and Drug

Administration of the United States has increased from 12 mg/capita/day in

1950 to 68 mg/capita/day in 2012 (Stevens et al., 2013a). Moreover, industri-

alized food designed to be consumed by infants may contain the highest con-

centrations of food colorants, either natural or artificial (Hofer and Jenewein,

1997). Consequently, the effects of these substances on human health have been

extensively questioned in the literature (Abbey et al., 2014; Bolel et al., 2012;

Stevens et al., 2013a,b, 2011; Arnold et al., 2012; Weiss, 2011). In particular,

several studies on children behavioral problems related with ACs emphasize at-

tention problems, hyperactivity, irritability, sleep disorders and aggressiveness,

(Stevens et al., 2013a; McCann et al., 2007; Bateman et al., 2004).

In figure 1 ligand molecules are shown. Tartrazine is an artificial synthesized

acid azo dye which is water soluble and yellow in solution (Li et al., 2014).

Recent studies on rats pointed out that tartrazine and carmoisine (also known

as azorubine) alter biochemical markers in vital organs such as liver and kidney,

not only at high doses but also at lowest ones (Amin et al., 2010). While

other studies demonstrated the adverse effects of tartrazine in learning and

memory functions (Gao et al., 2011), as well as on the male reproductive function

(Mehedi et al., 2009).

Figure 1
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Allura red is a water-soluble, monoazo class of synthetic food pigment, with

extraordinary stability in many manufactured food products such as candy coat-

ing, ice creams, drinks and confectionery (Wang et al., 2014). Allura red’s side

effects have been reported experimentally (Chung, 2000) and include DNA dam-

age in male mice (Tsuda et al., 2001). Quinoline yellow is a synthetic colorant

with possible genotoxic characteristics, as suggested from two different cellular

model systems, human lymphocytes in vitro and Vicia faba root-tip meristems,

in vivo (Macioszek and Kononowicz, 2004). While sunset yellow has shown re-

productive and neurobehavioral effects (Tanaka, 1996) as well as hyperactivity

(Ward, 1997).

In some food applications, such as confectionery and beverages, yellow ACs

quinoline or tartrazine may be matched by their natural equivalent: curcumin

(diferuloylmethane) (Hallagan et al., 1995; Aggarwal et al., 2007). This pig-

ment is extracted from the rhizome of curcuma longa, and may also be used as

natural flavor in food products. However, due to its light sensitivity and pH

dependency, yellow ACs might be preferred by the food industry (Batista et al.,

2006). Another yellow orange AC is sunset yellow which is matched in food

applications by a natural pigment extracted from the cochineal insect (dacty-

lopius coccus): carminic acid, (Koren, 1994). Allura red and carmoisine exhibit

red and pinkish shades, respectively, when applied in foods. Anthocyanins are

generally used as a natural solution for the replacement of these ACs. Natural

colors based on anthocyanins consist of fruits or vegetables extracts, and their

shade is pH dependent. These pigments, also used as ingredients in the phar-

maceutical industry, contain antioxidants and have shown positive health effects

(Tsuda, 2012; He and Giusti, 2010; Sarni-Manchado and Cheynier, 2006).

Aware of possible children’s health issues related to the consumption of ACs,

the European Parliament published a list of artificial food colors allowed to be

used in processed food but requiring a warning label on food packaging (see

table 1). This modification of the European regulation is aligned with the

evolution of European and North American customers perception over the last

years; indeed many customers are looking for food products with ”all natural”

3
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Food Colorant E number in EU Natural equivalent E number in EU

Sunset yellow E 110 Carminic Acid E 120

Quinoline yellow E 104 Curcumin E 100

Carmoisine E 122 Peonidin-3-glucoside E 163

Allura red E 129 Cyanidin-3-glucoside E 163

Tartrazine E 102 Curcumin E 100

Table 1: Food colorants to be used in processed food allowed by the Regulation (EC) No

1333/2008 of the European Parliament and of the Council of 16 December 2008 on food

additives. For artificial ones the labeling shall mention: may have an adverse effect on

activity and attention in children.

claims on packaging (Bartels and Onwezen, 2014; Tully and Winer, 2014; Hsu

and Chen, 2014).

During the last decade atomistic simulations have been able to contribute in

the understanding of critical problems in biophysics and computational chem-

istry, such as protein folding, protein-protein and protein-ligand docking (Piana

and Laio, 2007; Pietrucci et al., 2009; Berteotti et al., 2009). These advances

stand on the shoulders of newly developed methods that explore free energy

landscapes more efficiently, together with better and faster computer processors

(Van Der Spoel et al., 2005). Remarkably, collective variable driven molec-

ular dynamics (MD) have shown to suitably sample complex conformational

changes in biomolecules by accelerating rare events not observable by classical

MD (Fiorin et al., 2013). In particular, restrained MD simulations are able to

surpass intrinsic limitations of the physical models, resulting in a more efficient

statistical sampling (Fiorin et al., 2013; Laio and Parrinello, 2002; Laio and

Gervasio, 2008; Kumar et al., 1996). Besides, considering that large computer

power is not available to all, the problem of rapidly obtaining realistic dynamic

information on proteins, remains an issue of principal interest (Cossins et al.,

2012).

In this study we analyze by computational means how 5 artificial food col-

orants and their 4 natural equivalents interact with Human Serum Albumin

4
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(HSA), the most abundant protein in plasma which contributes to about 80%

of the blood osmotic pressure (He and Carter, 1992; Peters, 1995). Together with

alpha-1-acid glycoprotein, HSA is responsible for transporting drugs, steroids,

bilirubin, thyroid hormones, fatty and colic acids (Zunszain et al., 2003; Pe-

ters, 1995; Honoré, 1990), as it contains two structurally selective binding sites

(Jisha et al., 2006). The binding of such artificial and possibly toxic compounds

to HSA is of physiological relevance, since binding to HSA can be the way to

control these substances concentrations as well as their side effects (Pan et al.,

2011). As Basu and Kumar recently pointed out, the available free concentra-

tion for toxic action can be regulated by high binding to serum proteins (Basu

and Kumar, 2014). The binding between ACs and HSA could then affect the

absorption, distribution, metabolism and toxicity of these compounds and may

alter the functions and structure of the receptor protein (Wang et al., 2014).

Figure 2

2. Computational methods

2.1. Docking

In order to locate the protein binding site of each one of the 9 ligands (4

natural colorants and 5 artificial ones, since curcumin is used to replace both

tartrazine and quinoline yellow in the food industries) we performed a docking

analysis using the freely available PatchDock web server (Schneidman-Duhovny

et al., 2005). This large-scale docking web-tool allows for structure prediction

and scoring of protein/small-molecule-complexes through both, geometric fit

and atomic desolvation energy. The crystal structure of the Human Serum

Albumin (HSA) is available in the PDB (www.pdb.org) with PDB ID 1AO6

(Sugio et al., 1999). Ligand molecules were downloaded from PubChem (Bolton

et al., 2008) (tartrazine: CID 164825, curcumin: SID 12626, carmoisine: CID

22717453, Cyanidin-3-glucoside: CID 25244576, sunset yellow: CID 6093232,

allura red: CID 6093299, quinoline yellow: CID 6731, peonidin-3-glucoside: SID

5
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14288, carminic acid: SID 87565853) and their 3D structures were optimized

with the academic version of Maestro 9.7 (SchrödingerLLC) before docking.

Docking analysis provided a set of 100 candidates ranked by Patchdock’s scoring

function for each of the protein-ligand systems.

Docking simulations located the protein’s pocket near HSA’s subdomain IIA

(see figure 2), a principal binding site together with IIIA. IIA binding site has

been characterized as both electrostatic and hydrophobic (Sudlow et al., 1975,

1976) which has been also observed experimentally (He and Carter, 1992).

2.2. Docking refinement

Initial configurations of HSA-ligand were exported to Gromacs package in

order to use docking results as a starting point for dynamics. For each protein-

ligand system only the top1 docking candidate was selected, according to Patch-

Dock’s scoring function. Each ligand was parametrized for Gromacs using the

PRODGR web server (Schüttelkopf and van Aalten, 2004) and the Gromos45a3

force field. Systems were solvated in SPC-water (Berendsen et al., 1981) mini-

mized and equilibrated with Gromacs-4.6.3 (Hess et al., 2008). Docking refine-

ment simulations were run under the NPT ensemble for 20ns using the V-rescale

thermostat (Bussi et al., 2007) and Berendsen’s barostat (Berendsen et al., 1984)

at 298K.

In order to account for major conformational changes in the receptor protein

while the ligand binds, we slowly simulated the entering path of each molecule

using restrained MD with a reaction coordinate D (see eq. 1). This collective

variable pulls the ligand into the pocket binding site of HSA, according to each

docking prediction. Once the ligand is in the pocket we continued to sample by

restraining the value of D=0, meaning that the ligand is forced to stay in the

binding site. The collective variable defined D measured the three-dimensional

distance between the ligand center of mass Lcom and the geometric center of

the binding site Pcenter, (see eq. 1):

~D(x, y, z) = ~Lcom − ~Pcenter (1)

6
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This -in place- simulations allowed for further docking refinement and eval-

uation of hydrogen bond formation. To do so, we imposed a second collective

variable defined H (see eq. 2) to efficiently bias dynamics. Accordingly, collec-

tive variable H counts the number of hydrogen bonds between a group donors

and acceptors to drive the system into the formation of hydrogen bonds. User

defined values where set to r0 = 2.5, n = 6 and m = 12, where i counts over

the group of donors (ligand) and j over the group of acceptors (protein). The

switching function form of H ensures it to be differentiable.

H =
∑
ij

1− (
dij

r0
)n

1− (
dij

r0
)m

(2)

To perform restrained MD simulations we patched Gromacs-4.6.3 with Plumed

2.0.1 (Tribello et al., 2014), an open source library for free energy calculations,

in order to implement the reaction coordinates to drive each ligand along a bind-

ing path into the protein’s pocket and to bias the system into the formation of

protein-ligand hydrogen bonds. We used a time step of 2 fs, all bond-lengths

were constrained using the sixth-order LINCS algorithm (Hess et al., 1997), the

Particle-Mesh-Ewald (PME) method was used for the long-range electrostatics

(Essmann et al., 1995) with a Fourier grid spacing of 0.16 nm and all cut-offs

set to 1 nm.

Protein and ligand figures were created using the academic version of Mae-

stro 9.7 Molecular Modeling Environment (SchrödingerLLC). Visual Molecular

Dynamics (VMD) (Humphrey et al., 1996) has been extensively used for visu-

alizing MD trajectories and docking results.

2.3. Docking scoring

To score docking refined poses for each protein-ligand system the forma-

tion of hydrogen bonds was evaluated along the refinement MD trajectories,

as defined by collective variable H. The value of hydrogen bonds’ spatial and

directional properties has shown to be of major interest in analyzing docking

conformations (Meyer et al., 1996). Hydrogen bonds are a key contributor to

7
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the high specificity of macromolecule interactions, having distributions in good

agreement with energy landscapes obtained through electronic structure cal-

culations (Morozov et al., 2004). As previously demonstrated, hydrogen bond

refinement has proven to consistently bring initial models closer to natives struc-

tures (Masone and Grosdidier, 2014; Masone et al., 2012). Several available

softwares currently allow for hydrogen bond optimizations following a combina-

tion of local geometry restraint and a conformational search (Bhattacharya and

Cheng, 2013) and reorienting hydroxyl and thiol groups, water molecules, amide

groups of ASN and GLN residues, together with the imidazole ring in histidines

(Madhavi Sastry et al., 2013). Hence, we ranked our protein-ligand poses in

terms of the amount of hydrogen bonds formed during MD refinement trajec-

tories under the action of collective variables D and H. Finally, we compared

the docking affinity of all the systems under study.

3. Results and discussion

Modeling protein-ligand interactions can be considered a two-step problem of

increasing complexity: (a) pose generation and (b) pose refinement and scoring.

Normally, the first step is performed under an approximated but very efficient

rigid body docking algorithm, usually leaving full flexibility for the second step.

Due to time and speed limitations, most algorithms do not use all-atom force

fields to score docking poses, but instead, rely on soft scoring functions to correct

for steric clashes and for the lack of optimized hydrogen bond networks. The

scoring energy function then analyzes the conformation of the protein-ligand

pose and returns a numeric representation of the total energy. Although hav-

ing little meaning alone, this number can be used relatively to get an idea of

how stable the different docking conformations are. As a consequence, compu-

tational studies of protein-ligand interactions from an energetic point of view

are also important to comprehend their essential principles and thus to improve

modeling.

From docking calculations binding site’s relevant residues were identified in

8
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agreement with previous studies: between subdomains IIA and IIIA in (Ar-

tali et al., 2005) and binding site 1 in (Deeb et al., 2010), (see figure 3). Se-

lected residues for reaction coordinate definition include: hydrophobic Trp214,

Leu219, Phe223, Leu234, Leu238, Leu260, Ile264, Ile290, Ala291, hydrophylic

Arg222, Arg257 and His242 (He and Carter, 1992), free Cys34 and reactive

residues Lys195, Lys199 and Tyr411 located at the entrance of the IIA/IIIA

binding sites (Yvon et al., 1990). The center of mass defined by these residues

is Pcenter, dynamically calculated during simulations and used by the reaction

coordinate to constantly measure distance D (see eq. 1). Given that protein-

ligand interactions are not only driven by hydrogen bonding but also by other

force contributions such as hydrophobic, van der Waals and electrostatics, fig-

ure 3 depicts in detail the molecular interactions between each ligand and the

surrounding residues in HSA’s binding pocket. At the docking stage, most hy-

drophobic ligands are carminic acid, peonidin-3-glucoside, cyanidin-3-glucoside

and tartrazine. Curcumin and tartrazine are the ones with more positively

charged electrostatic interactions and allura red is the one showing more neg-

atively charged electrostatic interactions. Allura red, carmoisine and sunset

yellow present the larger amount of polar interactions.

Figure 3

Figure 4 shows the scoring results for all ligands studied in terms of the

amount of protein-ligand H-bonds, as measured by variable H, here used as

scoring function along 20ns trajectories. It is observed how in all cases, the

binding affinity (in terms of the H-bonding network) of the AC is systemati-

cally higher than its natural equivalent in terms of shade. This result suggests

that these artificial molecules might easily reach other targets in the body as

they are transported by HSA. Such is the case of tartrazine, classified as DNA

binder, toxic to human lymphocytes and a contributor to primary biliary cir-

rhosis (Carocho et al., 2014).

Figure 4

9
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The combination of docking prediction methods with molecular dynamics

simulations allows for efficient docking refinement through exhaustive explo-

ration of the protein potential energy landscape. As shown by Król and col-

laborators, accounting for full flexibility during relaxation tends to increase the

amount of recovered native contacts among sets of docking poses (Król et al.,

2007a,b). Alonso and collaborators have shown how molecular dynamics simu-

lations have been able to accurately, although expensively, refine a few selected

candidates from a previous fast docking stage used to sample high complexity

configurational spaces (Alonso et al., 2006). Yet, for most biological systems,

the complete atomistic description in long time scales is still beyond classical

molecular dynamics, as a result of the femtosecond time step needed for en-

ergy conservation. Then, it becomes critical to reduce the number of degrees

of freedom into a few parameters which can be biased to enhance dynamics

in a controlled manner. However, the major limitation of collective variable

based dynamics is the reduced amount of reaction coordinates that can be im-

plemented to avoid excessive computational costs. Besides, the initial selection

of the reaction coordinates might introduce erroneous biases on how events of

interest happen (Abrams and Vanden-Eijnden, 2010), meaning that, choosing a

correct set of collective variables remains an unsolved issue.

Hence, the easier binding process of ACs to HSA, demonstrated here from

a computational point of view, may be linked with the involvement of these

molecules in health issues as largely reported in the literature (see introduction

for references to each molecule).

4. Conclusions

This study provides an insight on protein-ligand interactions for 5 commonly

used artificial food colorants and their natural equivalents in terms of shade.

The protocol presented here identifies the protein-ligand binding site through

a docking algorithm and refines the docking solutions by restrained molecular

dynamics simulations. Two reaction coordinates are used to control the three

10
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dimensional distance from the ligand to the receptor protein binding site and

to bias the system into the formation of protein-ligand hydrogen bonds.

We have performed atomistic molecular dynamics to allow for the conforma-

tional space exploration that takes place when ligands bind to HSA. Refinement

of docking solutions is then critical due to the intrinsic approximated nature of

the docking algorithm. This kind of analysis is only possible with proper collec-

tive variables defined to bias sampling and efficiently accelerate an event (such

as a ligand going inside a receptor protein and the formation of hydrogen bonds

between a protein and a ligand), that otherwise would not be possible to observe

within current computer simulations times.

Our results indicate that ACs bind to HSA creating a stronger H-bond net-

work than their natural equivalents in terms of shade. Being HSA the most

abundant protein in plasma (He and Carter, 1992; Peters, 1995) responsible for

transporting a wide variety of molecules (Zunszain et al., 2003; Peters, 1995;

Honoré, 1990) its interaction with artificial compounds is of major physiological

importance (Pan et al., 2011) and may control the free concentration of these

compounds (Basu and Kumar, 2014). Besides, the interaction of HSA with

these ACs may as well interfere with HSA’s functions (Wang et al., 2014).

5. Acknowledgements

DM and CC thank CONICET and SeCTyP-UNCuyo for funding. Comput-

ing time granted by FCEN-ITIC cluster is gratefully acknowledged. The authors
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Figure 1: Selected artificial food colorants (left) with their respective natural equivalents

(right).
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Figure 2: Crystal structure of Human Serum Albumin (HSA) protein. Available in the Protein

Data Bank (www.pdb.org) with PDB ID 1AO6. Subdomain classification is both structural

and functional having different ligand-binding properties.
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Figure 3: Ligand docking to HSA. Artificial food colorants (left) with their respective natural

equivalents (right). HSA’s residue names green highlighted depict hydrophobic interactions,

blue indicates electrostatic positively charged, red electrostatic negatively charged and cyan

polar interactions.
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Figure 4: Comparison of H-bond formation during restrained molecular dynamics as measured

by collective variable H.
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