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Abstract: Nanoparticulate titanium dioxide (nano-TiO2) is a

widely used powerful nanoparticulate material with high sta-

bility, anticorrosion, and photocatalytic property. However, it

is possible that during nano-TiO2 exposure, there may be

negative effects on cardiovascular system in intoxicated

mice. The present study was therefore undertaken to deter-

mine nano-TiO2-induced oxidative stress and to determine

whether nano-TiO2 intoxication alters the antioxidant system

in the mouse heart exposed to 2.5, 5, and 10 mg/kg body

weight nano-TiO2 for 90 consecutive days. The findings

showed that long-term exposure to nano-TiO2 resulted in

obvious titanium accumulation in heart, in turn led to sparse

cardiac muscle fibers, inflammatory response, cell necrosis,

and cardiac biochemical dysfunction. Nano-TiO2 exposure

promoted remarkably reactive oxygen species production

such as superoxide radicals, hydrogen peroxide, and

increased malondialdehyde, carbonyl and 8-OHdG levels as

degradation products of lipid, protein, and DNA peroxidation

in heart. Furthermore, nano-TiO2 exposure attenuated the

activities of antioxidative enzymes, such as superoxide dis-

mutase, ascorbate peroxidase, glutathione reductase, gluta-

thione-S-transferase, and levels of antioxidants including

ascorbic acid, glutathione, and thiol in heart. Therefore, TiO2

NPs exposure may impair cardiovascular system in mice, and

attention should be aroused on the application of nano-TiO2

and their potential long-term exposure effects especially on

human beings. VC 2013 Wiley Periodicals, Inc. J Biomed Mater Res

Part A: 101A: 3238–3246, 2013.
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INTRODUCTION

The recent development of nanotechnology has provided
various innovative nano-materials (NMs). Nano-materials
have a large surface area per unit mass, high chemical reac-
tivity, high internal pore volumes, and enhanced cell pene-
trability. Because of these characteristics, NMs can induce
multiple unpredictable effects on human health and the
environment. However, despite the growing use of NMs,
little is known about their effects in humans and the
environment.

Nanoparticulate titanium dioxide (nano-TiO2) was pro-
duced abundantly and used widely in an increasing number
of human products including as a white pigment, food colo-
rant, in sunscreens and cosmetic creams, and in environ-
mental decontamination of air, soil, and water because of its
high stability, anticorrosion, and photocatalytic property.1–6

As the interest in the potential benefits of TiO2 NPs has
increased, there is also increasing concern over their poten-
tial toxic effects resulting from use or unintentional release
into the environment.7–12

In recent years, numerous studies have definitely
showed that nano-TiO2 exposure are able to cause the dam-
ages in various animal organ types, including lung,13–15

liver,16–23 kidney,24,25 spleen,26–28 and brain,29–33 but very
little is known about the cardiovascular system (such as
heart) damage. Wu et al. reported that dermal exposure to
nano-TiO2 in the forms of anatase (4 and 10 nm), rutile (25,
60, and 90 nm) and Degussa P25 (21 nm, anatase/rutile)
were suggested to cause significant decreases in the body
weight and increases of in the coefficient of liver and spleen
in hairless mice, particularly in anatase 10 nm and Degussa
P25 treated groups. However, there was no significant
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change of the heart. They found that nano-TiO2 could be
accumulated in the spleen, heart, and liver after a sub-
chronic dermal exposure, but most of them cannot pass
through the blood–brain barrier except Degussa P25. After
8 weeks of exposure to nano-TiO2, they observed that skin
sections from all nano-TiO2-exposed groups showed exces-
sive keratinization, and other pathological changes such as a
thinner dermis and an epidermis with wrinkles, specifically,
the anatase 10 nm and P25-exposed groups showed more
severe damages. Liver were exhibited as focal necrosis (25
nm, Degussa P25, 60 nm) and liquefaction necrosis (anatase
10 nm). And heart showed only small traces of white blood
cells in the anatase 10 nm group, but absence in the other
groups. They thought that even though the heart is one of
the most important organs, it was not significantly damaged
by the accumulated nano-TiO2 except the anatase 10 nm
ones.29 Particulate matter (PM) exposure is recognized to
be one of the most pressing issues in nowadays public
health, particularly in relation to the effects on the cardio-
vascular system. Human exposure to PM has been specifi-
cally linked to a number of cardiovascular conditions,34,35

such as myocardial infarction,36,37 hypertension,38,39 athero-
sclerosis,40,41 heart rate variability,42,43 thrombosis,44,45 and
coronary heart disease,46,47 all occurring because of either
direct or indirect mechanisms of action. Therefore, we also
hypothesized that long-term exposure to nano-TiO2 may
enter cardiovascular system and result in its damage for
human. Thus, the effects of nano-TiO2 on cardiovascular sys-
tem need to be elucidated in greater detail.

The oxidative damages of mouse heart caused by expo-
sure to nano-TiO2 were evaluated in the paper. The results
showed that nano-TiO2 could enter heart and increased re-
active oxygen species (ROS) accumulation, decreased activ-
ities of the antioxidant enzymes, and antioxidant contents,
and promoted oxidation of membrane lipid, protein, and
DNA in the heart, in turn led to inflammation, cell necrosis,
and sparse cardiac muscle fibers.

MATERIAL AND METHODS

Chemicals, preparation, and characterization
Nanoparticulate anatase TiO2 was prepared via controlled
hydrolysis of titanium tetrabutoxide. Details of the synthesis
and characterization of nano-TiO2 were described in our
previous reports.33,48 X-ray diffraction (XRD) measurements
showed that nano-TiO2 exhibit 101 peak of anatase. The av-
erage particle size of powdered nano-TiO2 which was sus-
pended in 0.5% w/v hydroxypropylmethylcellulose (HPMC)
K4M solvent after 24 h incubation ranged from 5 to 6 nm
and the surface area of the sample was 174.8 m2/g. The
mean hydrodynamic diameter of nano-TiO2 in HPMC solvent
ranged from 208 to 330 nm (mainly 294 nm), and the zeta
potential after 24 h incubation was 9.28 mV, respectively.33

Animals and treatment
One hundred fifty CD-1 (ICR) female mice aged 5 weeks (23
6 2 g) were purchased from the Animal Center of Soochow
University (China). All mice were housed in stainless steel
cages in a ventilated animal room. The room temperature of

the housing facility was maintained at 24 6 2�C with a rela-
tive humidity of 60 6 10% and a 12-h light/dark cycle. Dis-
tilled water and sterilized food were available ad libitum.
Prior to dosing, the mice were acclimated to the environ-
ment for 5 days. All procedures used in animal experiments
conformed to the US National Institutes of Health Guide for
the Care and Use of Laboratory Animals.49 Studies were
approved by the Soochow University Institutional Animal
Care and Use Committee.

A 0.5% HPMC was used as a suspending agent. Nano-
TiO2 powder was dispersed onto the surface of 0.5%, w/v
HPMC, and then the suspending solutions containing TiO2

NPs were treated by ultrasonic for 30 min and mechanically
vibrated for 5 min. For the experiment, the mice were ran-
domly divided into four groups (N ¼ 20), including a con-
trol group (treated with 0.5% w/v HPMC) and three experi-
mental groups [2.5, 5, and 10 mg/kg body weight (BW)
nano-TiO2]. The mice were weighed, and the nano-TiO2 sus-
pensions were administered to the mice by intragastric
administrations every day for 90 days. Any symptom or
mortality was observed and recorded carefully everyday
during the 90 days. After 90 days, all mice were first
weighed, and then sacrificed after being anesthetized using
ether. Blood samples were collected from the eye vein by
removing the eyeball quickly. Serum was collected by centri-
fuging blood at 2,500 rpm for 10 min.

Coefficients of heart
After weighing the body and hearts, the coefficients of
hearts to body weight were calculated as the ratio of heart
(wet weight, mg) to body weight (g).

Titanium content analysis
The hearts were removed from the freezer (�80�C) and
thawed. Approximately 0.1 g of the heart was weighed,
digested, and analyzed for titanium content. Inductively
coupled plasma-mass spectrometry ([ICP-MS] Thermo Ele-
mental X7; Thermo Electron, USA) was used to analyze the
titanium concentration in the samples.

Histopathological examination of heart
For pathologic studies, all histopathologic examinations
were performed using standard laboratory procedures. The
hearts were embedded in paraffin blocks, then sliced (5 lm
thickness) and placed onto glass slides. After hematoxylin–
eosin (HE) staining, the stained sections were evaluated by
a histopathologist unaware of the treatments, using an opti-
cal microscope (Nikon U-III Multi-point Sensor System,
Japan).

Biochemical assay of myocardium function
In this study, the activity of creatine kinase (CK) in serum
was assayed for evaluating myocardium function using a
biochemical autoanalyzer (Type 7170; Hitachi, Japan).

Oxidative assay
Superoxide ion (O2

–) in the heart tissues was measured by
monitoring the reduction of XTT in the presence of O2

–, as
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described by Oliveira et al.50 The detection of H2O2 in the
heart tissues was carried out by the xylenol orange assay.51

Lipid peroxidation of hearts was determined as the con-
centration of malondialdehyde (MDA) generated by the thio-
barbituric acid (TBA) reaction as described by Buege and
Aust.52

Protein oxidation of hearts was investigated according to
the method of Fagan et al.53 by determining the carbonyl
content. Proteins from heart homogenate were extracted in
50 mM KH2PO4 buffer (pH 7.5) containing 10 mM Tris, 2
mM MgCl2, 2 mM EGTA, and 1 mM PMSF. Aliquots of extract
were reacted with 10 mM 2,4-dinitrophenylhydrazine dis-
solved in 2.5M HCl for 1 h at room temperature in the dark
with vortex every 15 min. Proteins were precipitated with
20% trichloroacetic acid (w/v) and kept on ice for 10 min.
After centrifuging at 3,000�g for 20 min, protein pellets
were washed extensively with ethanol–ethylacetate (1:1)
and dissolved in 6M guanidine hydrochloride with 20 mM
KH2PO4 (pH 2.3). The absorbance was recorded at 380 nm
after centrifuging at 9,500�g for 10 min. The carbonyl con-
tent was calculated using the extinction coefficient of
22,000 M�1 cm�1.

DNA of hearts was extracted using DNeasy Tissue Mini
Kit (Nanjing Jiancheng Bioengineering Institute, Jiangsu,
China) as described by the manufacturer. Then, DNA con-
centration was determined by measuring absorbance at 260
nm using the DNA spectrophotometer (Hitach, Japan). About
38 lL of DNA suspension was incubated at 100�C for 2
min, treated with 3 lL of 250 mM potassium acetate buffer
(pH 5.4), 3 lL of 10 mM zinc sulfate, and 2 lL of nuclease
P1 (6.25 U/ll; Sigma–Aldrich) at 37�C overnight, and then
treated with 6 lL of 0.5M Tris–HCl (pH 8.3) and 2 lL of
alkaline phosphatase (0.31 U/ll; Sigma–Aldrich), at 37�C for
2 h. Formation of 8-OHdG was determined using the 8-
OHdG ELISA kit (Japan Institute for the Control of Aging,
Haruoka, Japan). This kit provides a competitive immunoas-
say for quantitative measurement of the oxidative DNA
adduct 8-OHdG. It was carefully performed according to
manufacturer’s instructions, and using a microplate varis-
haker-incubator, an automated microplate multi-reagent
washer, and a computerized microplate reader.

Antioxidant capacity of hearts
The hearts of mice were homogenized in 1 mL of ice-cold
50 mM sodium phosphate (pH 7.0) that contained 1% poly-
vinyl polypyrrolidone (PVPP). The homogenate was centri-
fuged (30,000�g for 30 min) and the supernatant was used
for assays of activities of SOD, catalase (CAT), ascorbic acid
peroxidase (APx), glutathione-S-transferase (GST), and gluta-
thione reductase (GR).

The activity of SOD was assayed by monitoring its ability
to inhibit the photochemical reduction of nitroblue tetrazo-
lium (NBT). Each 3 mL reaction mixture contained 50 mM
sodium phosphate (pH 7.8), 13 mM methionine, 75 mM
NBT, 2 mM riboflavin, 100 mM EDTA, and 200 mL of the
enzyme extract. Monitoring the increase in absorbance at
560 nm followed the production of blue formazan.54

CAT activity was measured by the decrease in the H2O2

concentration for 15 s, reading the absorbance at 240 nm
on a UV-3010 absorption spectrophotometer according to
Claiborne.55 The reaction volume was 1 mL and contained
500 mL of sample homogenate and 500 mL of sodium phos-
phate, buffer 50 mM, pH 7, and 15 mM H2O2. The control
was assayed without H2O2. One unit of enzyme activity was
defined as a decrease in absorbance of 0.001 min�1 at 240
nm.

APx activity was assayed using the method described by
Lundquist and Josefsson.56 A reaction mixture consisting of
100 mL supernatant, 17 mM H2O2 (450 mL), and 25 mM
ascorbate (450 mL) was then assayed for 3 min at 290 nm.
Activity was measured as disappearance of ascorbate. One
unit of enzyme activity was defined as a decrease in absorb-
ance of 0.001 min�1 at 290 nm.

GST activity was measured following the method of
Habig and Jakoby.57 The reaction buffer solution contained
100 mM Na-phosphate buffer (pH 6.5), 1 mM 1-chloro-2,4-
dinitrobenzene (CDNB) and 1 mM GSH. The reaction was
started by the addition of sample solution to the reaction
buffer solution. The activity was calculated from the
increase in absorbance at 340 nm for 1 min due to CDNB–
GSH conjugation when the extinction coefficient was 9.6
mM�1�cm�1.

GR activity was assayed, as described by Moron et al.,58

with minor modifications. The reaction mixture (1.0 mL)
consisted of 100 mM phosphate buffer (pH 7.8), 0.1 mM
EDTA, 0.05 mM NADPH, 3.0 mM oxidized glutathione
(GSSG), and 50 mL enzyme extract. The reaction was started
by the addition of GSSG and the NADPH oxidation rate was
monitored at 340 nm for 1.0 min. The activity of GR was
calculated as the amount of NADPH oxidized per minute
using the molar absorption coefficient of 6.22 � 10�6 for
NADPH.

In order to determine reduced glutathione (GSH) and
GSSG levels, the hearts were homogenized as described
above. GSH and GSSG contents were estimated using the
method of Hissin and Hilf.59 The reaction mixture contained
100 mL of supernatants, 100 mL o-phthaldehyde (1 mg/
mL), and 1.8 mL phosphate buffer (0.1M sodium phosphate,
0.005M EDTA, pH 8). Fluorometry was performed using a
F-4500 fluorometer (F-4500, Hitachi, Japan) with excitation
at 350 nm and emission at 420 nm.

Ascorbic acid (AsA) and dehydroascorbic acid (DHA)
determination was determined as described by Jacques-Silva
et al.60 Proteins were precipitated in 10 volumes of a cold
4% trichloroacetic acid (TCA) solution. An aliquot of homog-
enized sample (300 mL), in a final volume of 1 mL of the
solution, was incubated at 38�C for 3 h, then 1 mL H2SO4

65%(v/v) was added to the medium. The reaction product
was determined using color reagent containing 4.5 mg/mL
dinitrophenyl hydrazine and CuSO4 (0.075 mg/mL).

Thiol and disulfide contents in the heart were deter-
mined by the procedure described by Yee.61 The hearts
were ground and homogenized in 100 mM Tris–HCl buffer
(pH 8.6) containing 1 mM EDTA. After centrifuging at
9,500�g for 10 min, the supernatant was used for the
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determination of thiol and disulfide contents. For the deter-
mination of thiol content, 100 mL of supernatant was incu-
bated in 880 lL of 8M urea Tris–HCl buffer (pH 8.2) with
20 lL of 10 mM 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB)
for 30 min at room temperature. Similarly, sample and
reagent blanks were prepared for each determination. The
absorbance was recorded at 412 nm and thiol content was
calculated using the extinction coefficient of 13.6
mM�1�cm�1. The disulfide bonds were reduced to thiol
groups by adding 80 lL of 0.6M NaBH4 in 8.0M urea into
100 lL of supernatant. Two milliliter n-octyl alcohol was
added to the mixture to avoid foaming. The mixture was
then incubated for 2 h in a water bath at 25�C. The residual
NaBH4 was reacted with 20 lL of 2.0N HCl and then 778
lL of 8M urea Tris–HCl buffer (pH 8.2) was added to it. The
mixture was incubated with 20 lL of 10 mM DTNB for 30
min at room temperature. Sample and reagent blanks were
prepared for each determination. The absorbance was
recorded at 412 nm in order to evaluate the total thiol
content, which is the summation of amounts of thiol and
(disulfide)/2. The disulfide content was calculated as the
half of the difference between the total thiol content and
thiol content.

The content of the proteins was determined following
the Lowry’s method.62 Each parameter was determined in
five animals.

Statistical analysis
Statistical analyses were performed using SPSS 19 software.
Data are expressed as the means 6 standard error (SE).
One-way analysis of variance (ANOVA) was carried out to
compare the differences of means among the multi-group
data. Dunnett’s test was performed when each dataset was
compared with the solvent-control data. Statistical signifi-
cance for all tests was judged at a probability level of 0.05
(p < 0.05).

RESULTS

Coefficients of heart and titanium accumulation
The coefficients of heart, titanium accumulation in the
mouse heart caused by exposure to nano-TiO2 for 90 con-
secutive days are exhibit in Figures 1 and 2, respectively. It
can be seen that with increasing nano-TiO2 dose, the coeffi-
cients of heart and titanium contents in the heart were sig-
nificantly increased (p < 0.05 or p < 0.01), suggesting that
the coefficients of heart may be related to the increases of
nano-TiO2 accumulation and the oxidative injury of heart.

Histopathological evaluation
The histological photomicrographs of the heart sections are
shown in Figure 3. Only sparse cardiac muscle fibers of the
heart tissue were reflected in the 2.5 mg/kg BW nano-TiO2-
treated group [Fig. 3(b)], compared to the control [Fig.
3(a)]; while severe inflammatory cell infiltration on tunica
externa [Fig. 3(c)] and sparse cardiac muscle fibers [Fig.
3(d)] of the heart tissue was showed in the 5 mg/kg nano-
TiO2-treated group, respectively. Particularly, in the 10 mg/
kg BW nano-TiO2-treated group, cell necrosis and sparse
cardiac muscle fibers in the heart tissue [Fig. 3(e)] were
observed, respectively. The results suggested that with
increasing doses of nano-TiO2 exposure, the pathological
changes of heart were more significant.

Biochemical function of myocardium
In Figure 4, the CK activities in the TiO2 NPs-exposed mice
showed obvious increases from the control mice (p > 0.05),
indicating that nano-TiO2 exposure may result in myocar-
dium biochemical dysfunction of mice.

ROS accumulation and macromolecule peroxide levels
The effects of nano-TiO2 on the production rate of O2

– and
H2O2 in the mouse heart are shown in Figure 5. Compared
to the control, ROS contents of all the three stressed groups
elevated significantly with increasing nano-TiO2 doses

FIGURE 1. Coefficients of heart which were expressed as milligrams

(wet weight of tissues)/grams (body weight) of mice caused by an

intragastric administration with nano-TiO2 for 90 consecutive days.

Bars marked with different letters means it is significantly different at

the 5% confidence level. Values represent means 6 SE (N ¼ 20).

FIGURE 2. Titanium contents which were detected by ICP-MS in the

mouse heart caused by an intragastric administration with nano-TiO2

for 90 consecutive days. Bars marked with different letters means it is

significantly different at the 1% confidence level. Values represent

means 6 SE (N ¼ 5).
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(p < 0.05), suggesting that exposure to nano-TiO2 caused
oxidative stress in the heart.

To demonstrate the effects of nano-TiO2 on ROS genera-
tion, the levels of lipid peroxidation (MDA), protein peroxi-

dation (protein carbonyl), and DNA damage (8-OHdg) in
the mouse heart were examined and shown in Figure 6. The
marked increases of MDA, carbonyl and 8-OHdG in
the nano-TiO2-exposed hearts were also observed (Fig. 6;

FIGURE 3. Histopathological observation of heart of mice caused by an intragastric administration with nano-TiO2 for 90 consecutive days. Yel-

low arrows indicate interspace among the cardiac muscle fibers, blue arrows indicate cell necrosis, green circles show severe inflammatory cell

infiltration on tunica externa of the heart tissue. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIGURE 4. Change of biochemical parameter of cardiac function of

mice after an intragastric administration with nano-TiO2 for 90 con-

secutive days. Bars marked with different letters means it is signifi-

cantly different at the 5% confidence level. Values represent means 6

SE (N ¼ 5).

FIGURE 5. ROS accumulation in the mouse heart after an intragastric

administration with nano-TiO2 for 90 consecutive days. Bars marked

with different letters means it is significantly different at the 5% confi-

dence level. Values represent means 6 SE (N ¼ 5).
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p < 0.05), demonstrating that ROS accumulation led to lipid,
protein, and DNA peroxidation in the heart under nano-
TiO2-induced toxicity.

Antioxidant defense
The activities of antioxidative enzymes, including SOD, CAT,
APx, GR, and GST, in the heart, were examined (Fig. 7).
These enzymes of heart exposed TiO2 NPs were significantly
decreased with elevating nano-TiO2 doses (Fig. 7; p < 0.05).
To further explore the effects of nano-TiO2 stress on antioxi-
dant capacity, the redox states of GSH–GSSG, AsA–DHA, and
thiol–disulfide in the hearts were examined and shown in
Figure 8. The obvious decreases of GSH, AsA, and thiol
in the three nano-TiO2 stressed groups were also observed
(p < 0.05). These results suggested that nano-TiO2 exposure

significantly attenuated the capability of ROS removal in the
mouse heart.

DISCUSSION

In this study, toxicological impacts of nano-TiO2 on heart of
mice were evaluated. After the intragastric administration
with 2.5, 5, and 10 mg/kg BW of TiO2 NPs for 90 consecu-
tive days, significant increases of the heart indices (Fig. 1),
titanium accumulation (Fig. 2), and sparse cardiac muscle
fibers, inflammatory response, and cell necrosis in the heart
(Fig. 3) were observed, respectively.

It is well known that CK mainly exists in the heart. Cus-
tomarily, increased CK level indicates the myocardial lesion.9

In order to further study the biochemical mechanism of
nano-TiO2, CK activity for the damages of the myocardium
biochemical function in the blood was determined. The
result shows that long-term TiO2 NPs exposure caused sig-
nificant increases of CK activity in the serum, suggesting
cardiac biochemical dysfunction of mice. Wang et al. and Liu
et al. reported respectively that exposure to nano-TiO2 for 2
weeks elevated CK activity in the serum which was associ-
ated with myocardium dysfunction of mice, but they did not
work in the damaged mechanism.9,16 In this study, nano-
TiO2-induced abnormal pathological change in the heart. In
this study, nano-TiO2-induced abnormal pathological
changes and myocardium biochemical dysfunction in the
mouse heart may be related to the alterations of antioxida-
tive levels and peroxidation of lipid, protein, and DNA. ROS
are ubiquitous in living aerobic organisms. They result
either from the cells’ metabolism or from the action of
exogenous physical sources (e.g., ionizing radiation, UVA)
and/or chemical compounds. Oxygen free radicals can
induce a variety of damages to lipid, protein, and DNA in
cells. Increasing evidences suggested that oxidative stress in
the liver,20,21 kidney,22 spleen,24 brain,30 hippocampus,33

FIGURE 6. Peroxide levels of lipid, protein, and DNA in the mouse

heart after an intragastric administration with nano-TiO2 for 90 con-

secutive days. Bars marked with different letters means it is signifi-

cantly different at the 5% confidence level. Values represent means 6

SE (N ¼ 5).

FIGURE 7. Antioxidative enzyme activities in the mouse heart after an

intragastric administration with nano-TiO2 for 90 consecutive days.

Bars marked with different letters means it is significantly different at

the 5% confidence level. Values represent means 6 SE (N ¼ 5). [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

FIGURE 8. Redox states of GSH–GSSG, AsA–DHA, and thiol–disulfide

in the mouse heart after an intragastric administration with nano-TiO2

for 90 consecutive days. Bars marked with different letters means it is

significantly different at the 5% confidence level. Values represent

means 6 SE (N ¼ 5).
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lung of mice,14 and in zebrafish12 was closely related to
nano-TiO2 exposure. In this article, our data show that long-
term exposure to nano-TiO2 promoted obviously accumula-
tion of ROS such as O2

–, H2O2 in the mouse heart (Fig. 5),
which may be linked to the immune cell infiltration (Fig. 3;
ROS in the immune cells or produced by the immune cells
as they attempt to rid the tissue of particles), and consistent
with the marked elevation of lipid, protein, and DNA perox-
ide levels (Fig. 6), demonstrating that nano-TiO2 exposure
induced severe oxidative stresses in the heart, thus leading
to abnormal pathological changes, and biochemical dysfunc-
tion of the mouse heart.

In this study, nano-TiO2-induced ROS production in the
mouse heart conducted to oxidative injuries in biological
macromolecules, including lipid, protein, and DNA peroxida-
tion. Nano-TiO2 stress is suggested to lead to extensive lipid
peroxidation, which has often been used as a marker of
nano-TiO2-induced oxidative membrane damages of
liver,20,21 kidney,24 brain,30 and lung of mice.14 In this study,
we observe that nano-TiO2 exposure significantly increased
MDA content in the hearts (Fig. 6). Protein peroxidation is
often generated in organisms, which results in protein
structure damage and dysfunction. The carbonyl level of
proteins is widely used as an indicator of oxidative protein
damage.63 Elevated carbonyl level has been demonstrated in
organisms under various oxidative stresses.64,65 Our results
show an increased carbonyl level in the nano-TiO2-exposed
mouse heart (Fig. 6). Furthermore, over ROS production in
cells can not only result in oxidative damages in lipids and
proteins, but also conduct to oxidative damage of DNA. Vari-
ous reagent chemicals are effective in the hydroxylation of
the deoxyguanosine residue in DNA. H2O2 generation is
demonstrated to induce 8-OHdG or 2,6-diamino-4-hydroxy-
5-formamidopyrimidine formation,66,67 while 8-OHdG is by
far the most studied oxidative DNA lesion and has caused
much attention because of its mutagenic potential.68 The
oxidized guanine residue 8-oxoguanine can pair both in
Watson–Crick mode with cytosine and in Hoogsteen mode
with adenine. The latter causes G:C!T:A transversion in
cells. As suggested in cells of patients with Cockayne syn-
drome, the deficiency in nucleotide excision repair causes a
low level of 8-OHdG repair and a high frequency of
G:C!T:A transversion at the site of the lesion. Besides, the
transversions are frequent in human cancers and are espe-
cially prevalent in the mutational spectrum of the tumor
suppressor gene p53. It suggests the significance of 8-OHdG
as an endogenous mutagen and its possible role in the pro-
cess of carcinogenesis.69 Accordingly, 8-OHdG level in the
nano-TiO2-exposed mouse heart was greatly elevated com-
pared to control (Fig. 6). Therefore, long-term exposure to
nano-TiO2 was demonstrated to cause severe oxidative dam-
ages in the mouse heart (Fig. 5).

Impairment of the antioxidant defense system has been
suggested to increase protein carbonyl groups in rat
exposed to malathion or organophosphate pesticides.69,70

Elevated levels of MDA, carbonyl, and 8-OHdG in the nano-
TiO2-exposed mouse heart resulted in increased oxidative
damages probably due to reduction of the antioxidant

capacity in the mouse heart. Consequently, we also eval-
uated activities of antioxidant enzymes involved in SOD,
CAT, APx, GR, and GST, and non-enzymatic antioxidant sys-
tem such as the redox states of GSH–GSSG, AsA–DHA, and
thiol–disulfide in the mouse heart, indicating that nano-TiO2

exposure greatly suppressed the five enzymes activities (Fig.
7), and attenuated the ratios of GSH/GSSG, AsA/DHA, and
thiol/disulfide (Fig. 8). It implies that the production of oxi-
dative stress in cardiac cell is because an unbalance
between ROS production and their removal makes macro-
molecules and membranes damaged, resulting in the cardiac
lesion. Our previous studies also demonstrated that nano-
TiO2 exposure resulted in the significant decreases of activ-
ities of SOD, CAT, APx, and glutathione peroxidase (GSH-Px),
and ratios of GSH/GSSG and AsA/DHA in liver,20,21 kidney,24

brain,30 and hippocampus of mice.33 In general, organism
posses its own active antioxidant defense systems (antioxi-
dative enzymes such as SOD, CAT, APX, GR, and GST, as well
as non-enzymatic antioxidants such as AsA, GSH, and thiol)
through which production and removal of ROS is kept in
balance. SOD converts O2

- into H2O2 and O2,
54 and CAT and

APX reduce H2O2 into H2O and O2.
71,72 GR plays a key role

in oxidative stress by converting GSSG into GSH. Increased
GR activity can elevate the GSH/GSSG ratio, which is
required for AsA regeneration.73 As we know, GST can cata-
lyze the detoxification of lipid peroxides and xenobiotics by
conjugating them with GSH.74 Therefore, increased activities
of SOD, CAT, APX, GR, and GST can keep a low level of ROS
and prevent ROS toxicity and protect cells. AsA can directly
interact with and detoxify oxygen free radicals and thus
scavenge ROS. GSH is demonstrated to be a key component
of the antioxidant network that removes ROS either directly
or indirectly by involving in the AsA–GSH cycle.75,76 The
vital role of GSH in the antioxidant defense system is due to
its ability to regenerate AsA through DHA reduction that is
via the AsA–GSH cycle.77 GSH also plays an important role
in the antioxidant defense system by acting as a substrate
or cofactor for some enzymes, and by maintaining the redox
state.74 While thiol is considered to be a highly reactive con-
stituent of protein molecule and it acts as an antioxidant
and participates in the detoxification of xenobiotics and
toxic substances. Decreased thiol contents under oxidative
stress indicate that oxidative stress might induce the oxida-
tion from thiol group to disulfide group, resulting in altera-
tion of the cellular thiol–disulfide redox state.78 Thiol–disul-
fide interconversion plays a major role in the regulation of
different physiological processes, and depends strongly on
the redox state of the thiol pool.79 In this study, the
decreases of antioxidant enzymes activities and antioxidant
contents such as AsA, GSH, and thiol in the heart following
exposure to nano-TiO2 were associated with increases in
ROS (Fig. 5), and macromolecules peroxide levels (Fig. 6). It
suggests that nano-TiO2 significantly impaired antioxidant
defense systems in the mouse heart.

In addition, this study suggests that the oxidative damages in
the heart may be similar for lung, liver, kidney, spleen, brain, and
so on in animals following various routes, such as inhalation,
transdermal absorption, and ingestion, of exposure to nano-TiO2.
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CONCLUSION

In our study, exposed mice to nano-TiO2 caused an oxidative
damage in the heart monitored by an increase in ROS accu-
mulation. The enhancement of MDA, carbonyl, and 8-OHdG
levels caused by nano-TiO2 suggested an oxidative attack
that was activated by a decrease of antioxidant defense
mechanisms against stress damage measured by analyzing
SOD,CAT, APX GR, and GST activities, as well as non-enzy-
matic antioxidants such as AsA, GSH, and thiol contents. As
the antioxidative response of cell was attenuated in the
heart following exposure to nano-TiO2, it caused significant
pathological changes and cardiac biochemical dysfunction in
the heart. Therefore, our findings will be to benefit the
understanding of nano-TiO2-induced effects on cardiovascu-
lar system and arouse the attention of nano-materials appli-
cation and exposure effects especially on human cardiovas-
cular system for long-term and low-dose exposure.
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